Q 04Photoelectric effect experiments are performed using three different metal plates p, q and r having work functions $\phi_p = 2.0 \text{ eV}$, $\phi_q = 2.5 \text{ eV}$ and $\phi_r = 3.0 \text{ eV}$, respectively. A light beam containing wavelengths of 550 nm, 450 nm and 350 nm with equal intensities illuminates each of the plates. The correct I-V graph for the experiment is

ANS

(a) Energy of photon $E = \frac{hc}{\lambda} = \frac{1240}{\lambda}$ The energy possessed by photons of wavelength 550 nm

$$E_1 = \frac{1240}{550} = 2.25 \,\text{eV}$$

The energy possessed by photons of wavelength

$$450 \text{ nm } E_2 = \frac{1240}{450} = 2.76 \text{ eV}$$

The energy possessed by photons of wavelength

$$350 \text{ nm } E_3 = \frac{1240}{350} = 3.54 \text{ eV}$$

Work function of $\phi_p = 2.0 \ eV$ is least among p, q, and r so it can emit photoelectrons by E_1 , E_2 and E_3 or from all three wavelengths. Hence magnitude of V and I both will be maximum for metal plate P.